当前位置:智城范文网>范文大全 > 征文 > 两色金鸡菊头状花序的化学成分研究

两色金鸡菊头状花序的化学成分研究

时间:2022-03-25 08:15:18 来源:网友投稿

材料

Bruker Advance -300核磁共振波谱仪(TMS作内标);YG-20 250质谱仪;JASCO J-810型圆二色散光谱仪。高效液相色谱仪(Waters 600 泵,Waters 2487 Dual λ Absorbance Detector,Waters 2996 Photodiode Array Detector,Millennium 2010系统工作站,均为美国Waters液相色谱公司产品)。薄层色谱硅胶GF254和柱色谱硅胶(100~200,200~300目),均为青岛海洋化工厂生产;聚酰胺薄膜(台州市路桥四甲生化塑料厂);葡聚糖凝胶Sephedax LH-20(Amershambioscies Ltd.);反相硅胶RP-18(Fuji Silysia Chemical Ltd.);大孔吸附树脂D101(南开大学化工厂)。

样品采自新疆和田地区墨玉县,由香港浸会大学中医药学院陈虎彪教授鉴定为两色金鸡菊C. tinctoria的干燥头状花序,药材标本存放于北京大学中医药现代研究中心标本室(No. CT-XJ-0408)。

2 提取和分离

两色金鸡菊干燥花序5.0 kg,用二氯甲烷-甲醇(1∶1)混合溶剂超声除去中、低极性成分,剩余残渣用70%甲醇提取3次,溶剂量分别为50,40,30 L,提取时间依次为1,0.5,0.5 h,合并提取液并浓缩。将浓缩物分布于水中,依次用乙酸乙酯、正丁醇萃取,得到乙酸乙酯萃取物和正丁醇萃取物。将乙酸乙酯萃取物再混悬于水中,用二氯甲烷反萃取,得到二氯甲烷萃取物(45 g)和水层。将正丁醇萃取物混悬于水中,用乙酸乙酯反萃取,得到乙酸乙酯萃取物和水层。合并正丁醇部分的乙酸乙酯萃取物和乙酸乙酯部分的水层,即为乙酸乙酯萃取物(90 g)。正丁醇部分经乙酸乙酯反萃取后的水层浓缩即为正丁醇提取物(168 g)。

取乙酸乙酯萃取物90 g,硅胶柱色谱分离,二氯甲烷-甲醇(100∶1)洗脱得到Fr.A;Fr.A经减压硅胶柱色谱分离,二氯甲烷-甲醇-水梯度洗脱(15∶1∶0.01~2∶1∶0.01)得到Fr.A-a~Fr.A-c。Fr.A-a经硅胶柱色谱进一步分离,石油醚-乙酸乙酯梯度洗脱(20∶1~10∶1 )得到Fr.A-a-1,经氯仿重结晶得到无色针状结晶8(29.8 mg)。Fr.A-b采用减压硅胶柱色谱进行分离,氯仿-甲醇-水(20∶1∶0.05)洗脱得到Fr.A-b-1,以Sephadex LH-20柱色谱继续分离,90%甲醇洗脱得到Fr.A-b-1-1和Fr.A-b-1-2;经高效液相柱色谱进一步分离,色谱柱为Prep Nova-PakRHP C18,检测器为Waters 2487 Dual λAbsorbance Detector,流动相为甲醇-0.05%三氟乙酸溶液(2∶8),Fr.A-b-1-1 得到黄色无定形粉末1(9.3 mg),2(2.0 mg),3(3.2 mg);Fr.A-b-1-2得到类黄色无定形粉末5(3.3 mg),6(8.0 mg)。Fr.A-c经减压硅胶柱色谱反复分离,二氯甲烷-甲醇梯度洗脱(15∶1~9∶1 )得到Fr.A-c-1,经甲醇重结晶得到无色针状结晶7(30.3 mg)。

取正丁醇萃取物148 g,D101大孔吸附树脂柱色谱分离,甲醇-水梯度洗脱,70%乙醇洗脱部分为Fr.Ⅰ;Fr.Ⅰ采用Sephedax LH-20柱色谱分离,50%甲醇洗脱得到Fr.Ⅰ-1;Fr.Ⅰ-1以ODS柱色谱进一步分离,50%甲醇洗脱得到Fr.Ⅰ-1-1;Fr.Ⅰ-1-1以高效液相柱色谱进行分离,色谱柱为Prep Nova-PakRHP C18,检测器为Waters 2487 Dual λ Absorbance Detector,流动相为甲醇-0.05%三氟乙酸溶液(9∶16), 得到黄色无定形粉末4(6.7 mg)。

3 结构鉴定

化合物1 类黄色无定形粉末,溶于甲醇,mp 197~200 ℃。EI-MS m/z 154 (M)。1H,13C-NMR 数据见表1。其数据与文献[11]报道的3,4-二羟基苯甲酸数据基本一致。

化合物2 类黄色无定型粉末,溶于甲醇,mp 213~215 ℃。 ESI-MS m/z 137 [M-H]-1H,13C-NMR 数据见表1。其数据与文献[12]报道的4-羟基苯甲酸数据基本一致。

化合物3 类黄色无定型粉末,溶于甲醇,mp 202~204 ℃。 ESI-MS m/z 179 [M-H]-1H-NMR(CD3OD,300 MHz) δ:7.33(1H,d,J=15.9 Hz,Hβ),6.99(1H,s,H-2),6.91(1H,d,J=8.4 Hz,H-6),6.73(1H,d,J=8.4 Hz,H-5),6.15(1H,d,J=15.9 Hz,H-α);13C-NMR(CD3OD,75 MHz) δ:168.5(C=O),148.0(C-4),145.7(C-3,β),126.0(C-1),120.8(C-6),115.8(C-5,α),114.5(C-2)。以上数据与文献[13]报道的咖啡酸数据一致。

化合物4 类黄色无定形粉末,溶于甲醇,mp 187~189 ℃。EI-MS m/z 341 (M)。 1H-NMR(DMSO-d6,500 MHz) δ:7.59(1H,d,J=16.0 Hz,H-β),7.50(2H,d,J=8.5 Hz,H-2,6),7.06(2H,d,J=8.5 Hz,H-3,5),6.35(1H,d,J=16.0 Hz,H-α),4.91(1H,d,J=7.5 Hz,H-1′),3.84(1H,d,J=12 Hz,H-6′),3.71(3H,s,-OCH3),3.64(1H,d,J=12 Hz,H-6′);13C-NMR(DMSO-d6,125 MHz)δ:169.4(C=O),160.9(C-4),145.8(C-β),130.8(C-2,6),129.8(C-1),117.0(C-3,5),116.7(C-α),101.9(C-1′),78.3(C-5′),78.0(C-3′),74.9(C-2′),71.3(C-4′),62.5(C-6′),52.1(-OCH3)。以上数据与文献[14]报道的对羟基桂皮酸甲酯葡萄糖苷(4-O-β-D-glucopyranosyl-p-coumaric acid methyl ester)数据基本一致。

化合物5 类黄色无定形粉末,溶于甲醇,mp 223~225 ℃。 EI-MS m/z 272 (M)。 1H,13C-NMR 数据见表2。CD 323,290 nm波长处分别出现正、负Cotton效应,因此Ⅴ为2S构型。其数据与文献[15]报道的2S-3′,5′,7-三羟基二氢黄酮(2S-3′,5′,7-trihydroxyflavanone)数据一致。

化合物6 类黄色无定形粉末,溶于甲醇,mp 229~231 ℃。EI-MS m/z 288(M)。1H,13C-NMR 数据见表2。CD 323,292 nm波长处分别出现正、负Cotton效应,因此Ⅵ为2R,3R构型。以上数据与文献[16]报道的(2R,3R)-3,4′,5,7-四羟基二氢黄酮[(2R,3R)-3,4′,5,7-tretahydroxyflavanone]数据基本一致。

化合物7 无色针状针晶,溶于甲醇,mp 167~169 ℃。13C-NMR(C5D5N,75 MHz)δ:149.2(C-5),138.9(C-22),129.5(C-23),121.9(C-6),102.6(C-1′),78.6(C-5′),78.5(C-3′),78.1(C-3),75.4(C-2′),71.7(C-4′),62.8(C-6′),56.8(C-14),56.2(C-17),50.3(C-9),46(C-24),40.8(C-13),39.9(C-12), 39.4(C-1),37.5(C-4),36.9(C-10),36.4(C-20),32.2(C-2),32.1(C-25),30.3(C-8),29.5(C-7),29.3(C-16),25.7(C-15),24.5(C-28),21.3(C-11),20.0(C-26),19.4(C-19),19.2(C-21),19.0(C-27),12.2(C-18),12.0(C-29)。以上数据与文献[17]报道豆甾醇葡萄糖苷数据一致。

化合物8 无色针状结晶,溶于氯仿,mp 139~141 ℃,Liebermann-Burchurd反应阳性,10%硫酸乙醇溶液显色为紫红色。TLC行为与β-谷甾醇对照品一致,混合熔点不下降。

[参考文献]

[1] Shimokoriyama M,Anthochlor pigments of Coreopsis tinctoria [J]. J Am Chem Soc, 1956, 79: 214.

[2] Zhang Y, Shi S P, Zhao M B, et al. A novel chalcone from Coreopsis tinctoria Nutt. [J]. Biochem Syst Ecol, 2006, 34: 766.

[3] 梁淑红,哈木拉提,庞市宾,等. 金鸡菊提取物降血压化学成分实验研究 [J]. 时珍国医国药,2010,21(7):1619.

[4] 曹燕,庞市宾,徐磊,等. 金鸡菊提取物对血管环舒张作用的探讨 [J]. 农垦医学,2011,33(2):148.

[5] 梁淑红, 庞市宾, 刘晓燕,等. 金鸡菊提取物降血脂作用的动物实验研究 [J]. 农垦医学,2009,31(6):495.

[6] 张淑鹏,李琳琳,木合布力·阿布力孜,等. 昆仑雪菊提取物对α-葡萄糖苷酶的抑制作用 [J]. 现代生物医学进展,2011,11(6):1055.

[7] Dias T, Bronze M R, Houghton P J, et al. The flavonoid-rich fraction of Coreopsis tinctoria promotes glucose tolerance regain through pancreatic function recovery in streptozotocin-induced glucose-intolerant rats [J]. J Ethnopharmacol, 2010, 132: 483.

[8] Dias T, Liu B, Jones P, et al. Cytoprotective effect of Coreopsis tinctoria extracts and flavonoids on tBHP and cytokine-induced cell injury in pancreatic MIN6 cells [J]. J Ethnopharmacol, 2012, 139: 485.

[9] Hwang I G, Kim H Y, Shin S L, et al. Biological activities of Coreopsis tinctoria Nutt. flower extracts [J]. Korean J Hortic Sci, 2010, 28: 857.

[10] Woo J H, Jeong H S, Chang Y D, et al. Antioxidant activities of fractions obtained from flowers of Coreopsis tinctoria Nutt. [J]. Korean J Hortic Sci, 2010, 28:115.

[11] 邱鹰昆,窦德强,裴玉萍,等. 仙人掌的化学成研究 [J]. 中国药科大学学报,2005,36(3):213.

[12] 刘玉明,杨峻山,刘庆华. 瘤果黑种草子化学成分的研究 [J]. 中国中药杂志,2005,30(13):980.

[13] 李静,黎莲娘,宋万志. 南丹参化学成分研究 [J].中草药,1994,25(7):347.

[14] Luyengi L, Pezzuto J M, Waller D P, et al. Linusitamarin, a new phenylpropanoid glucoside from Linum usitatissimum [J]. J Nat Prod, 1993, 56(11): 2012.

[15] Jurd L, Manners G D. Isoflavene, isoflavan, and flavonoid constituents of Gliricidia sepium [J]. J Agric Food Chem, 1977, 25(4): 723.

[16] El-Sohly H N, Ross X C, Joshi S A, et al. Flavonoids from Maclura tinctoria [J]. Phytochemistry, 1999, 52(1): 141.

[17] 王俊儒,彭树林,王明奎,等. 大火草根部的化学成分 [J]. 植物学报,1999,41(1):1071.

Chemical constituents of Coreopsis tinctoria

ZHANG Yuan , TU Peng-fei

(1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences,Peking University Health Science Center, Beijing 100083, China;

2. School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China)

[Abstract] Objective: To study the chemical constituents of the inflorescences of Coreopsis tinctoria and provide the chemical basis for development and utilization of this plant. Method: Various chromatographic techniques were employed for the isolation and purification of the constituents including silica gel,Sephadex LH-20 and pre-HPLC. The structures of compounds were elucidated by chemical and spectral analysis(NMR,IR,UV and MS). Result: Eight compounds have been isolated from the inflorescences of C. tinctoria , including three organic acids which are 3,4-dihydroxybenzoicacid(1),4-hydroxybenzoicacid(2) and caffeic acid(3),one organic ester which is 4-O-β-D-glucopyranosyl-p-coumaric acid methyl ester(4),two flavonones which are 2S-3′,5′,7-trihydroxyflavanone(5) and(2R,3R)-3,4′,5,7-tetrahydroxylflavanone(6),two sterols which are stigmasterol-3-O-β-D-glucopyranoside(7)and β-sitosterol(8). Conclusion: Compounds 1-7 were isolated from genus Coreopsis for the first time and compound 8 was isolated first from C. tinctoria.

[Key words] Coreopsis tinctoria; inflorescences; chemical constituents; organic acids; flavanones

doi:10.4268/cjcmm20122316

[责任编辑 孔晶晶]

推荐访问: 金鸡 头状花序 化学成分 两色 研究

版权所有:智城范文网 2010-2025 未经授权禁止复制或建立镜像[智城范文网]所有资源完全免费共享

Powered by 智城范文网 © All Rights Reserved.。粤ICP备20058421号