【摘 要】以抛掷爆破中漏斗坑形成为分析的基础,明确了重力以及岩土介质的粘结力在抛掷爆破中的影响和作用。通过对抛掷爆破相似理论关系的分析,明确了重力在大型抛掷爆破中的决定性作用。通过对相应试验的比较和分析,明确了重力作用在软弱岩以及漏斗坑形成中起到了决定性作用,并在得出相应结论的基础之上明确了 公式及其修正,并且实现了其在大型抛掷爆破中的有效应用。
【关键词】大型;抛掷爆破;重力;影响
爆破计算大多基于几何相似原则。抛掷爆破中,装药量的计算是基于 公式。
= K h3f ( n)
在上述公式中,K是受到炸药以及岩土特性影响的系数,而h 是装药在试验中埋藏的深度,n是抛掷的指数,而n= B / H,B以及H是抛掷试验中漏斗坑半径以及漏斗坑深度。上面的公式充分说明,爆破试验中,爆破尺度之间转换与几何原则相似原则相符合,也就是在爆破抛掷指数相同n的作用下,所产生的爆破抛掷漏斗坑相似,而试验中的炸药量与漏斗坑的体积成正比,也就是正比于h3。
但具体的爆破试验表明,当爆破规模扩大时,尤其对于核爆炸的弹坑计算,并不完全能与几何相似相符合,应在具体的计算中引入修正,经过修正的计算才与实际试验相适应。经过修正的公式中,炸药量的增加将大于漏斗坑体积增加的的速率。具体可从抛掷漏斗坑所形成的物理本质上理解。当岩土介质受到爆炸的影响而破碎,而后被破碎的岩土由于爆炸所产生的气状产物推出,由此,爆炸的能量首先在岩土介质的粘结力 上得到了消耗。其次,则消耗在了重力场中的岩土介质的抛掷位移上。前者与抛掷体积h3成正比,而后者则与 gh4成正比。
对于漏斗坑小( h 小) 的爆破, h3比 gh4远远要大,在该种状况下,可忽略重力作用所造成的影响。其与几何相似性原则相符合,由此可适用于未修正前的公式。而对于h数值较大的爆破试验, h3与 gh4进行比较时,无法将后者视为微量,从而不能完全适用于上面的公式。并且,当爆破规模较大,重力作用在相应的试验中起到决定性作用时,计算的药量将与h4形成正比。为证实重力作用在大型抛掷爆破中的重要性,进行了一系列的室内模拟试验,在该项试验中,以压缩空气代替了爆炸气体。
根据抛掷爆破的物理过程,其参与的物理量为:岩土介质的 ,内摩擦系数K,岩土介质强度 。爆破过程决定性的参数为空腔能量 n,空腔直径 ,气体绝热参数 ,装药埋深h,重力加速度g,以及地面大气压力pa。漏斗坑的基本参数为其半径B。
根据几何相似理论,抛掷漏斗坑的量纲关系式应为
由上述公式得知,若仅仅考虑几何相似性,忽略重力相似性,也就是排除参数 n/ gh4的影响,其充要条件在于 gh 与pa 及 之比足够小。以此类推,若是只考虑重力相似性,忽略几何相似性,也就是忽略 n/ gh4及 n/ pa h3,其充要的条件是 gh远大于pa 及 。而中间情况的深埋与炸药量,若是保持介质的不变,则 n/ gh4的作用将随着爆破规律的增加而逐渐明显。为了实现对大规模爆破试验中重力作用显著的模拟,应经尽量减小pa 和 ,使之与 gh的值相比忽略不计。也就是在量纲关系式中忽略 n/ h3 和 n/ pah3参数所造成的影响。在模拟试验中,通过采用真空减小pa数值,并采用干砂减小岩土介质之间的粘结力 。
当排除了 n/ h3参数的影响,依旧存在一定的摩擦力,还需要消耗一定的能量。由此,应保留相关参数K 和 ,并且考虑到空腔中并不能保持绝对真空状态,由此,为准确考虑抛掷过程中的阻力,还应以参数 n / ( gh+ pa) h3代替 n/ gh4,也就是 gh+ pa为试验中的总体阻力。由此,在重力作用为决定性作用的状况下,抛掷漏斗坑的量纲关系式的新形式为:
为了便于书写,可令
当前可对模拟试验以及原型的TNT以及核大型抛掷爆破具体的试验结果。
通过图线模型显示了模拟试验与原型试验中,地表投影中心土体隆起速度最大值数据比较。模拟试验的经验公式为v 0= 0. 6h01. 85 , 无量纲v 0以及h0的值表示为以下形式:
通过在相应的图线模型上注明模拟试验以及原型TNT和核试验曲线,通过相应的图示的曲线比较,可得知模拟试验以及原型试验具有较好的一致性。由此可说明,对于大型的爆破试验,在抛掷漏斗坑的形成中,重力作用所造成的影响是决定性的。
通过相应的曲线图标还可知,在h0< 0. 5 时,原型试验中的抛掷速度将大于模拟试验中的速度,这在很大程度上是由于炸药埋深的减少,自由面附近原型试验中爆炸压缩波对抛掷漏斗坑形成作用增强的缘故。而在模拟试验中,压缩空气没有爆炸的压缩波。
通过图线形式显示了原型试验地表面投影中心隆起速度时程曲线以及模拟曲线时程的比较。根据曲线得知,两个试验时程曲线仅在初始阶段存在区别,原型试验中,隆起速度由爆炸压缩波的作用决定,由此该区别是可以理解的。大由于模拟试验中不存在爆炸压缩波,由此在后续的气相加速阶段,图线曲线则显示出了二者一致的表现趋势。而在相应的曲线中,由于原型试验规模较小,高速摄影机难以对爆炸压缩波所产生的土体运动进行区分,由此,相应的曲线则完全贴合一致。原型试验与模拟试验抛掷爆破数据的一致性趋势表明在岩石中,尤其是弱岩中抛掷漏斗坑形成过程中,重力是占据决定性作用的。
为明确大埋深状况下抛掷爆破中存在的尺度效益,在美国以及前苏联进行了大量的现场试验,充分显示了重力作用对于漏斗坑尺寸形成的重要性,也就是显示了几何相似的偏差。
为了修正相关公式,建议在h> 25m状况下,计算爆破药量的公式可用
随着相应技术的不断发展,按照抛掷漏斗坑尺寸试验成果整理所得的另一公式也得到了有效的应用,也就是:
由于以上公式所具有的适应性,致使可知,基于几何相似的 试验公
式具有较强的适用性。大埋深(大药量)的爆破中,重力作用较大,甚至具有决定性的作用。由此,应采用修正后的几何相似性试验公式,而大埋深抛掷爆破或是弹坑爆炸模拟试验应在离心机上进行,从而推导得出重力相似的试验公式。
参考文献:
[1]钱七虎. 中国岩石工程技术的新进展[J]. 中国工程科学, 2010,(08) .
[2]葛涛,王明洋. 坚硬岩石在强冲击荷载作用近区的性状研究[J]. 爆炸与冲击, 2007,(04) .
[3]钱七虎,戚承志. 岩石、岩体的动力强度与动力破坏准则[J]. 同济大学学报(自然科学版), 2008,(12) .
[4]钱七虎,李树忱. 深部岩体工程围岩分区破裂化现象研究综述[J]. 岩石力学与工程学报, 2008,(06) .
[5]马淑娜,刘新宇,马林建. 大型洞库开挖爆破振动影响的简化加荷方法[J]. 解放军理工大学学报(自然科学版), 2010,(02) .
推荐访问: 抛掷 重力 爆破 影响