摘要:以已分离的11株纤维素降解菌为材料,采用滤纸崩解法和透明圈法,初步筛选出4株纤维素降解能力较强的菌株。将这4株单菌进行两两组合,研究混合菌系在9d内的CMC酶活和FPA酶活与单菌发酵之间的异同。结果表明,混合菌发酵CMC酶活和FPA酶活均优于单一菌株;同时筛选出一组具有高降解能力的混合菌体系;并对该混合菌系降解稻草的最适反应温度、最适初始pH值、产生还原糖的时间进行了研究,结果表明,在30℃、pH值4.5、发酵96 h时混合菌降解稻草的效果最好。
关键词:纤维素降解菌;筛选;CMC酶活;FPA酶活;还原糖含量;降解条件
中图分类号:Q93-331文献标识码:A文章编号:0439-8114(2011)03-0490-03
Screening of Cellulose Degrading Microorganism and the Degrading Condition of
Rice Straw
YANG Ya-zhena,MA Li-ana,ZHANG Jian-minb,GAO Zhan-xianga,DONG She-qina
(Yangtze University, a.College of Life Science; b.College of Agronomy, Jingzhou 434025, Hubei, China)
Abstract: Four strains with strong degradation ability to cellulose materials were screened out of 11 bacteria using filter paper degradation method and clear halo method. Then a mixed germ with higher degradation ability was obtained as the CMC and FPA enzyme activity of mixed bacteria and pure bacterium was compared. The optimum degrading condition of the mixed germ to rice straw was 30℃, pH 4.5, and fermentation for 96 h.
Key words: cellulose degrading microorganism; screening; CMC enzyme activity; FPA enzyme activity; degrading condition
纤维素是地球上最廉价、最丰富的可再生资源。全世界每年纤维素及半纤维素的生成量为850亿t。利用微生物产生的纤维素酶来分解和转化纤维素是纤维素利用的有效途径。纤维素的生物降解对开辟新能源和防止其污染环境有重要意义,一直是生物技术领域的研究重点[1,2]。在长期生产实践中发现该生物过程是微生物单独作用不能完成或只能微弱进行的,必须依靠两种或两种以上的微生物共同作用才能完成,微生物混合培养或混合发酵已越来越受重视[3]。而且国内对产纤维素酶能力较强的单一菌种研究较多,菌种混合发酵的研究较少[4,5]。本试验在纤维素降解单一菌株研究的基础上,着力于筛选降解纤维素的混合菌系,旨在为纤维素的高效转化提供依据。
1材料与方法
1.1菌种
纤维素降解菌分别来自枯树根、烂菜叶、牛粪和牛胃中。
1.2培养基制备
PDA培养基:马铃薯200 g,蔗糖20 g,琼脂粉20 g,水1 000 mL,pH值6.5。滤纸条鉴定培养基:(NH4)2SO4 0.10%, KH2PO4 0.10%, MgSO4·7H2O 0.05%,K2HPO4 0.20%,酵母膏0.01%,滤纸条(规格为1 cm×7 cm)1块,pH值6.5。纤维素刚果红培养基:(NH4)2SO4 0.20%,MgSO4·7H2O 0.05%,KH2PO4 0.10%,NaCl 0.05%,CMC-Na 2.00%,刚果红0.02%,琼脂2.00%,pH值6.5。液体发酵培养基:KH2PO4 1.00 g, NaCl 0.10 g, MgSO4·7H2O 0.30 g, NaNO3 2.50 g, FeCl3 0.01 g,CaCl2 0.10 g,秸秆木质纤维素 20.00 g,pH值7.20~7.40。
1.3菌种初筛
透明圈直径(H)与菌落直径(D)比值的测定:将11株保藏菌种(菌种名称分别为N1、N2、N3、N4、N5、N6、N7、N8、N9、N10、N11)活化后分别接种到PDA培养基上,30℃培养3d。将每一株菌分别转接到纤维素刚果红培养基上,30℃培养4 d后,加入适量1 mol/L的NaCl溶液,浸泡1 h,根据H与D比值的大小进行初筛。
单菌株滤纸失重率的测定:将透明圈大的菌种接种于滤纸条鉴定培养液中,以不接种处理作对照,28℃摇床培养8 d,分别在2、4、6、8 d时测其失重率。滤纸失重率的测定:用滤纸过滤发酵液,将残留物80℃烘干称重,用减重法计算出滤纸失重率。失重率=(培养前底物干重-培养后底物干重)×100%/培养前底物干重。
将单菌株滤纸失重率较大且H/D值大于2.0的菌株作为复筛菌种。
1.4复筛
将初筛所得单菌种进行两两组合,对单菌种和不同组合菌种测定羧甲基纤维素酶活和滤纸酶活。以体积比为1∶1的接种比例、10%的接种量分别接入固态培养基中。
1.4.1羧甲基纤维素酶活测定①酶液的制备:将发酵液于4 000 r/min,4℃,离心20 min,取上清液,备用。②纤维素酶活力的测定方法(DNS法):取A、B、C共3支50 mL比色管,在A、B管中分别加入1.5、0.5 mL的1% CMC-Na溶液(用pH值4.8的醋酸-醋酸钠缓冲液配制)适当稀释的酶液, C管中加入1.5 mL的pH值为4.8的醋酸-醋酸钠缓冲液和0.5 mL酶液,50℃下保温30 min,然后在3支比色管中分别加入2.5 mL的DNS试剂,沸水浴5 min后放入水中冷却,终止反应,定容至25 mL,摇匀,在波长520 nm处测定吸光值(C管作空白对照),并从葡萄糖标准曲线上查出相应的葡萄糖含量,再折算成酶活力单位。CMC酶活力定义为:在pH值4.8,50℃条件下,1 mL酶液每分钟水解羧甲基纤维素钠生成1 μg葡萄糖的酶量,称为一个酶活力单位,以U/mL表示。
1.4.2滤纸酶活(FPA)测定取A、B、C共3支具塞比色管,在A、B管中加入pH值4.8醋酸-醋酸钠缓冲液1.5 mL和1 cm×6 cm规格的新华滤纸条(约50 mg),50℃下预热10 min后,加入0.5 mL适当稀释的酶液,C管不加底物作空白对照,50℃下保温60 min,然后在3支比色管中分别加入2.5 mL DNS试剂,沸水浴5 min后立即在水中冷却,终止反应,定容至25 mL,摇匀,在波长520 nm处测定吸光值(C管作空白对照),根据葡萄糖标准曲线计算酶活力。酶活力定义为:在pH值4.8,50℃条件下, 1 mL酶液每分钟水解滤纸条生成1μg葡萄糖的酶量,称为一个酶活力单位,以U/mL表示。
1.5菌种降解稻草条件研究
还原糖含量测定按照DNS比色法[6]进行。
2结果与分析
2.1初筛结果
由经过活化的11株菌株在刚果红培养基上的生长情况(表1)可知,菌株N1、N2、N3、N7、N8和N9的滤纸失重率相对较高;从透明圈与菌落圈直径之比来看,菌株N1、N3、N7、N8的H/D都超过2.0。因此,选取N1、N3、N7、N8号菌株作为复筛对象。
2.2复筛结果
发酵过程中菌系CMC酶活的变化情况见表2。由表2可知,接种后1~2 d内酶活逐渐上升,大部分菌株在3~4 d时酶活出现最高峰值,5~6 d酶活开始下降,7~9 d酶活又缓慢上升。两种菌株混合培养在一定程度上会提高CMC酶活,组合菌株N7+N8培养4 d时的CMC酶活为195.7U/mL,相当于其菌株单独培养平均酶活的2.36倍。
表3表示的是滤纸酶活在发酵过程中的变化情况,总体的变化趋势是在1~4 d内先上升,5~7 d上升到峰值,之后再下降。两种菌混合培养时FPA酶活也有一定程度的提高,组合菌株N7+N8在发酵6d时的FPA酶活为30.5 U/mL,相当于其菌株单独培养平均酶活的1.7倍。因此,选取组合N7+N8作为最优纤维素降解混合菌系。
2.3组合菌株N7+N8降解稻草的最适温度
分别研究了温度在20、30、40、50、60℃时混合菌降解稻草后的CMC酶活、FPA酶活、产还原糖量(表4)。由表4可知,CMC酶活、FPA酶活、还原糖含量三者之间存在较明显的正相关性,三者均在温度为30℃时达到最大值。因此选择30℃作为混合菌降解稻草的最适温度。
2.4组合菌株N7+N8降解稻草的最适pH值
分别研究了初始pH值为4.0、4.5、5.0、5.5和6.0时混合菌降解稻草后的CMC酶活、FPA酶活、还原糖量。由表5可知,初始pH值为4.5时,CMC酶活、FPA酶活、还原糖含量三者均达到最大值。因此选择4.5为混合菌降解稻草的最适初始pH值。
2.5组合菌株N7+N8降解稻草的最适培养时间
在混合菌降解稻草的最优发酵条件下,每隔12 h测定1次其生长状况及产糖情况,研究培养时间对混合菌生长及产还原糖的影响,结果见图1。由图1可知,混合菌系在培养72 h之前,还原糖产量较低,在培养72~96 h过程中,混合菌系迅速产生还原糖,在96 h时还原糖产生量最高,达1.8 g/L。
3讨论
本研究筛选出了一组具有较高纤维素降解活力的混合菌系,该混合菌系的CMC酶活和滤纸酶活均高于单一菌株;同时研究了该混合菌系降解稻草的最适反应温度、最适初始pH值及培养时间对还原糖量的影响。本研究虽对上述试验条件进行了探讨,但以下问题有待进一步研究:①所得混合菌系纤维素降解酶活力距离生产要求还有很大的差距,应采用诱变等方法对该菌系进行处理,以提高现有菌系的产酶活力;②在利用单因素法研究温度、pH值、培养时间对产酶的影响的基础上,需进一步研究多因素对发酵产酶的影响,以使理论研究更加贴近实际生产。
参考文献:
[1] MANDELS M, STERNBERG D. Recent advances in cellulose technology[J]. J Ferment Technol,1976,54(4):267-286.
[2] HARUTA S,CUI Z,HUANG Z,et al. Construction of a stable microbial community with high cellulose-degra-dation ability[J]. Applied Microbiology Biotechnology,2002,59(4-5):529-534.
[3] 冯树,周樱桥,张忠泽. 微生物混合培养及其应用[J] .微生物学通报,2001,28(3):92-95.
[4] 史玉英,沈其荣,娄无忌,等. 纤维素分解菌的分离和筛选[J]. 南京农业大学学报,1996,19(3):59-62.
[5] 洪洞,黄秀莉. 纤维素酶的应用[J].生物学通报,1997,32(12):18-19.
[6] 王玉万,徐文玉. 木质纤维素固体基质发酵物中半纤维素、纤维素和木质素的定量分析程序[J].微生物学通报,1987,14(2):81-84.
推荐访问: 降解 纤维素 稻草 筛选 条件