总结于表1中,结果表明:N元素与O元素的含量都较少,而C元素的原子分数为95.27%,说明前驱体PANI经过750 ℃的炭化与850 ℃的活化过程,已充分裂解而形成了多孔炭.
2.5 多孔炭材料的电化学性能
不同的炭化温度对最终获得的多孔炭的电化学性能产生一定的影响.我们将多孔炭样品ACP 700,ACP 750以及ACP 800分别进行了电化学表征.
图5(a)为ACP 700,ACP 750,ACP 800在电流密度为1 A/g下的GCD曲线,由图可知:3种多孔炭的充电与放电部分曲线基本对称,说明它们具有良好的电容特性与可逆性;随着炭化温度的升高,多孔炭电极对应曲线中的氧化还原平台依次减弱,这归结于随着炭化温度的升高形成的多孔炭的氮含量逐渐下降,从而氧化还原反应也逐渐减弱;从图5(a) 可知:ACP 750曲线的放电时间最长,结合公式(1)可知其具有更高的比电容值.图5(b)为样品在不同电流密度下的比电容曲线,从此曲线可更直观地看到:在相同的电流密度下,ACP 750表现出最高的比电容值,在0.5 A/g时其比电容值高达247 F/g,当电流密度为20 A/g时比电容值仍有182 F/g,展现出良好的倍率性能.上述结果的形成原因可能是随着炭化温度的升高,一方面前驱体PANI裂解程度越高释放出的小分子越多,使得形成的炭孔变多从而更利于熔融的KOH进入孔与炭反应,另一方面随着温度的升高得到的炭中的含氮活性点变少,与KOH反应的活性降低,这两方面的因素使ACP 750具有较好的多级孔结构以及较大的比表面积(2 496.6 m2/g),从而使得其具有理想的比电容值和倍率性能.此外,ACP 750的电化学性能明显地高于以PANI作为前驱体制备出的块状多孔炭的电化学性能(比电容值一般为130~230 F/g)[5-6],这个结果表明规整的较小粒径的球形粒子有利于其电化学性能的提高.
为了进一步了解ACP 750的电化学性能,我们对其进行了CV以及循环稳定性的测试.测试结果如图6所示,(a)图为ACP 750在不同扫描速率下的CV曲线,曲线近似于较规整的矩形,并出现了轻微的氧化还原峰,说明该材料的电化学行为主要表现为双电层电容,含有少量的法拉第赝电容,这与此前的GCD分析相吻合,赝电容的产生与样品中含有的少量的N和O元素有关.进一步观察可看出,随着扫描速率的逐渐增大,CV曲线形状基本保持不变,这表明此材料具有较好的倍率性能[15],此结果与前述比电容分析结果一致.从ACP 750在电流密度为10 A/g下经过1 000次恒电流充放电得到的稳定性曲线(如图6(b)所示)可看出,样品在1 000次循环后,其比电容保持率无衰减,甚至有轻微的升高,可达到102%,这表明所制备的材料在循环过程中活性点稍有增加而导致了其优异的循环稳定性.
3 结 论
1)以花瓣球形PANI为前驱体经750 ℃炭化,再用KOH于850 ℃活化制备了多孔炭球形粒子.
2)制备出的ACP 750多孔炭球形粒子直径约为2 μm,为微孔、介孔、大孔的多级孔结构,其比表面积高达2 496.6 m2/g.
3)ACP 750具有优异的电化学性能:当电流密度为0.5 A/g时,其比电容值高达247 F/g;当电流密度增大到20 A/g时,比电容值仍有182 F/g,展现出了优良的倍率性能;在电流密度为10 A/g下进行1 000次恒电流充放电循环后,比电容量保持率为102%.以上优异的电化学性能归因于ACP 750具有合适的多级孔结构分布、高的比表面积以及较小粒径等结构特征.
参考文献
[1] WANG Guoping, ZHANG Lei, ZHANG Jiujun. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828.
[2] ZHAI Yunpu, DOU Yuqian, ZHAO Dongyuan, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials, 2011, 23(42): 4828-4850.
[3] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
[4] 韓绍昌, 张维华, 范长岭, 等. 硼酸对硬炭基负极的结构和电化学性能的影响[J]. 湖南大学学报:自然科学版,2015,42(12): 7-14.
HAN Shaochang, ZHANG Weihua, FAN Changling, et al. Influences of boric acid on the structure and electrochemical performance of hard carbon anode[J]. Journal of Hunan University: Nature Sciences, 2015, 42(12): 7-14.(In Chinese)
[5] LI Limin, LIU Enhui, LI Jian, et al. A doped activated carbon prepared from polyaniline for high performance supercapacitors[J]. Journal of Power Sources, 2010, 195(5): 1516-1521.
[6] KIM K S, PARK S J. Easy synthesis of polyanilinebased mesoporous carbons and their high electrochemical performance[J]. Microporous and Mesoporous Materials, 2012, 163: 140-146.
[7] ZHOU Jin, ZHU Tingting, XING Wei, et al. Activated polyanilinebased carbon nanoparticles for high performance supercapacitors[J]. Electrochimica Acta, 2015, 160: 152-159.
[8] CHO K T, LEE S B, LEE J W. Facile synthesis of highly electrocapacitive nitrogendoped graphitic porous carbons[J]. The Journal of Physical Chemistry C, 2014, 118(18): 9357-9367.
[9] 钟文斌,李士超. 高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成[J]. 湖南大学学报:自然科学版,2015,42(6): 41-46.
ZHONG Wenbin, LI Shichao. Synthesis of high electrochemical performance of PANI/GNs composites[J]. Journal of Hunan University: Nature Sciences, 2015, 42(6): 41-46.(In Chinese)
[10]YAN Jun, WEI Tong, QIAO Wenming, et al. A highperformance carbon derived from polyaniline for supercapacitors[J]. Electrochemistry Communications, 2010, 12(10): 1279-1282.
[11]DU Zhiling, PENG Youshun, MA Zhipeng, et al. Synthesis of nitrogendoped carbon cellular foam with ultrahigh rate capability for supercapacitors[J]. RSC Advances, 2015, 5(14): 10296-10303.
[12]ZHANG Zhongjie, CHEN Chong, CUI Peng, et al. Nitrogendoped porous carbons by conversion of azo dyes especially in the case of tartrazine[J]. Journal of Power Sources, 2013, 242: 41-49.
[13]YUN Y S, CHO S Y, SHIM J, et al. Microporous carbon nanoplates from regenerated silk proteins for supercapacitors[J]. Advanced Materials, 2013, 25(14): 1993-1998.
[14]ZHU Y W, MURALI S, STOLLER M D, et al. Carbonbased supercapacitors produced by activation of graphene[J]. Science, 2011, 332(6037): 1537-1541.
[15]YU Pingping, LI Yingzhi, ZHAO Xin, et al. Graphenewrapped polyaniline nanowire arrays on nitrogendoped carbon fabric as novel flexible hybrid electrode materials for highperformance supercapacitor[J]. Langmuir, 2014, 30(18): 5306-5313.
推荐访问: 多孔 球形 制备 花瓣 聚苯