当前位置:智城范文网>范文大全 > 征文 > 两种叶型离心泵内固液两相流场的对比

两种叶型离心泵内固液两相流场的对比

时间:2022-05-08 09:40:08 来源:网友投稿

doi:10.3724/SP.J.1201.2012.02116

摘要:为了研究分流短叶片离心泵内固液两相流场的运动规律,应用Fluent软件分别对分流短叶片离心泵和原型离心泵进行固液两相流场的数值模拟,在多重参考系坐标下,采用有限体积法对雷诺时均Navier-Stokes方程进行离散,选用标准的k-ε湍流模型和SIMPLEC算法进行求解,得到两种不同叶型离心泵内固相浓度、速度等参数的分布和变化规律,并对其结果进行比较和分析。模拟结果表明:在输送相同初始固相体积浓度时,分流短叶片离心泵内固相浓度分布均匀性明显高于原型离心泵;对于分流短叶片离心泵,流道内固相颗粒浓度分布均匀性随着初始固相体积浓度的增大而减小;分流叶片离心泵内速度等值线基本与叶型平行,减小了流动损失。采用分流短叶片,对于改善离心泵内流动状态,减小流场脉动,降低冲击损失和叶片磨损具有重要意义。所得结论对于指导实际应用以及为分流短叶片固液两相流离心泵的设计提供参考依据。

关键词:分流短叶片;离心泵;固液两相流场;数值模拟

中图分类号:TH311 文献标识码:A 文章编号:

1672-1683(2012)02-0116-04

Comparative Study of Solid-Liquid Two-Phase Flow Field in Centrifugal Pump with Two Types of Vanes

LI Guo-wei1,FENG Xin-wei2,CUI Jun-kui1,SUN Qi1

(1.College of Mechanical Engineering,Liaoning Technical University,Fuxin 123000,China;

2.Higher Vocational and Technical College,Shenyang Agricultural University,Shenyang 110122,China)

Abstract:In order to study the motion performance of the solid-liquid two-phase flow field in the centrifugal pump with short splitter vanes,the Fluent software is used to simulate the solid-liquid two-phase flow fields in the centrifugal pump with short splitter vanes and prototype centrifugal pump,respectively.With the multi-reference coordinate system,the finite volume method is applied to disperse the Reynolds time-average N-S equation,and the standard k-ε turbulent flow model and SIMPLEC arithmetic are used to solve the equation.The distribution and variation of the solid-phase concentration and velocity in the centrifugal pump with two types of vanes are obtained and compared.The results indicate that when transporting the same initial solid-phase volume concentrations,the distribution of solid-phase concentrations is more uniform in the centrifugal pump with short splitter vanes than that in the prototype centrifugal pump.In the centrifugal pump with short splitter vanes,the distribution uniformity of solid-phase concentrations decreases with the increasing of the initial solid-phase volume concentration.The velocity isoline is basically parallel with the vane profile in the centrifugal pump with splitter vanes,resulting in the reduction of the loss of flow.The adoption of the short splitter vanes improves the flow state and reduces the impulse of the flow field in the centrifugal pump,which can lower the impact loss the abrasion of vanes.The conclusion can provide references for the guidance of the practical application and the design of the solid-liquid two-phase flow centrifugal pump with short splitter vanes.

Key words:short splitter vane;centrifugal pump;solid-liquid two-phase flow field;numerical simulation

降低离心泵内的水力损失、提高工作效率以及减少磨损一直是离心泵结构优化设计的重要研究内容之一。分流短叶片离心泵就是在传统离心泵基础之上加以改进的新型离心泵。文献[1-9]对分流短叶片离心泵的设计方法、设计经验、势流分析、外特性试验以及内部流场测试等进行深入研究,取得了很多有价值的科研成果。但其主要侧重于以单相液态流场介质为研究对象。而文献[10-16]对常规叶片固液两相流离心泵的内部流场数值模拟、边界层分析以及泵的外特性等进行了深入研究,但其主要侧重于对传统离心泵的固液两相流场研究为主。目前,对于分流短叶片离心泵内部的固液两相流场的数值模拟研究成果还比较少。

因此,本文采用在叶轮出口处布置分流短叶片的设计方法对离心泵进行改进,运用 Fluent 软件对分流离心泵内部流场进行湍流数值模拟计算,并与原型离心泵进行对比研究,分析了不同初始固相体积浓度时叶轮流道内颗粒浓度、速度等参数的变化情况,从而探索分流短叶片离心泵内的流动规律,以达到改善其水力性能,提高效率,节能减耗的目的。所得结论对于指导实际应用和为分流短叶片固液两相流离心泵的设计提供参考依据。

1 离心泵建模及基本参数设定

如图1所示,以固液两相流离心泵为研究对象,对原型离心泵和分流短叶片离心泵叶轮建立实体模型,两者的几何参数和运动参数如下:叶片数6个,叶轮进、出口直径分别为D1=70 mm和D2=112 mm,叶轮出口宽度b=20 mm,叶片出口角β=25°,转速n=1 200 r/min,入口速度v=2.5 m/s。分流短叶片附加设计参数如下:短叶片进口直径:D*=0.6D2=152.4 mm,圆整为152 mm;偏置度(即短叶片在两长叶片中间的左右位置)为0.5θ;偏转角α=0°。利用Gambit软件构建离心泵的计算模型,并对其叶轮通道部分采用适应性较好的非结构化网格进行划分。

2 模拟计算方法

2.1 建立控制方程

计算应用多重参考坐标系法,采用雷诺时均Navier-Stokes方程和标准k-ε模型进行处理,选用Mixture多相流模型。

各相质量守恒方程为:

t(αqρq)+ Δ(αqρqvq)=0(1)

式中:αq-第q相的体积分数;ρq-第q相的密度;vq-第q相的速度。

各相动量守恒方程为:

t(αsρsvs)+ Δ·(αsρsvsvs)=-αs Δp-

Δps+ Δ·τs+αsρs(s+lift,s+Vm,s)+

αsρsg+∑nl=1(Kls(vl-vs)+lsvls)(2)

式中:ρs-第s相的固体压力;vl、vs-第l相、第s相的速度;Kls-液体相l和固体相s之间的动量交换系数;n-相的总数;τs-第s相固体的压力应变张量;s、lift,s、Vm,s-固相颗粒受到的外部体积力、升力和虚拟质量力;ls-从第l相到第s相的质量传递量;vls-固液两相的相间速度。

标准k-ε方程为:

t(ρqαqk)+xi(ρqαqvqik)=

xi(αqμtσkkxi)+αq(Gk-ρqε)(3)

t(ρqαqε)+xi(ρqαqvqiε)=

xi(αqμtσεεxi)+αqεk

(C1εGk-C2ερqε)(4)

式中:k-湍动能;Gk-湍流产生率;ε-湍动耗散率;μt-湍动黏度;C1ε=144、C2ε=192、σk=1.0和σε=1.3为经验常数[17]。

2.2 设置初始条件和边界条件

假设输送液体为标准状态下的水,密度ρ水=998.2 kg/m3,流体黏度μ=0.001 003 kg/(m·s)。固相全部为单一同种球形粒径均匀的固体颗粒,密度ρ固=2 600 kg/m3,粒径d=0.1 mm,初始固相体积浓度分别选取CV=10%、20%、30%、40%和50%。各相均为连续不可压缩,物理特性保持常数,不发生相变。根据离心泵进口流道特点,假定进口速度在轴向分布均匀,流动是无旋轴对称的,采用速度进口边界条件,离心泵入口两相流速均为2.5 m/s,初始入口压力p=101 325 Pa。由于蜗壳出口两相流的速度和压力未知,所以采用自由出流出口边界条件。应用MRF方法进行模拟时,需要将初始运动区域内的流体域设定以叶片相同转速进行旋转,转速n=1 200 r/min。将叶片定义为动边界,叶片初始转速为n=0 r/min,其余边界类型均为静止壁面边界。

3 流场模拟结果对比与分析

3.1 固相体积浓度分布

图2是输送5种不同初始固相体积浓度时,原型离心泵内固相颗粒浓度等值线图。可以看出,随着CV的增加,叶片非工作面附近的浓度梯度明显增大,并且出现局部浓度较高的凸点,浓度分布效果相对较差,造成流动损失增加,摩擦损失加剧。图3是5种不同初始固相体积浓度时,分流短叶片离心泵内固相颗粒浓度等值线图。可以看出,随着CV的增加,叶片非工作面附近的浓度梯度增加相对较小,并且等值线基本与叶型相互平行,整个流道内的浓度分布比较均匀,流动损失减小,摩擦损失降低。采用分流短叶片布置后,能够有效地防止长叶片非工作面上流体的分离和脱流,更好地控制流体运动;由于叶轮出口叶片增多,减小了流道的扩散,从而可减小脱流和边界层分离现象的发生。

3.2 速度场分布

叶轮流道内部速度随着固相浓度的变化基本保持不变,这对于原型离心泵和分流叶片离心泵均适用。图4是以CV=30%为例,得到的原型离心泵与分流短叶片离心泵内速度等值线图。可以看出:图4(a)中叶片顶部区域速度等值线相对较密,说明速度梯度较大,流动比较剧烈;而图4(b)中长叶片顶部区域速度等值线相对较疏,说明速度梯度较小,流动比较平稳。其主要原因是:靠近长叶片背面的相对速度较大,加入分流叶片后可使两个叶轮通过的流量趋于相等。在尾流区附近,组成新的长短叶片流道,起到分流作用,使小流道内流速增加,在一定程度上起到冲刷尾流的作用。

从整个流道来看,图4(a)的速度等值线呈封闭状,在叶片非工作面的顶端达到最大值;而图4(b)的速度等值线基本与叶型相互平行。其主要原因是:由于叶轮出口叶片增多,减小了流道的扩散,从而可减小脱流和边界层分离;另外分流叶片可改善叶轮内的速度分布,减小叶轮内的水力损失以及从叶轮出口到泵体进口之间的混合损失,提高了泵的性能。

4 结论

在输送相同初始固相体积浓度时,分流叶片离心泵内固相浓度分布均匀性明显高于原型离心泵。对于分流叶片离心泵,流道内固相颗粒浓度分布均匀性随着初始固相体积浓度的增大而减小。分流叶片离心泵内速度等值线基本与叶型平行,减小了流动损失。采用分流叶片,对于改善离心泵内流动状态,减小流场脉动,降低冲击损失和叶片磨损具有重要意义。

参考文献(References):

[1] 王乐勤,朱祖超,汪希萱.低比转速两级复合叶轮高速离心泵的研制[J].浙江大学学报,1997,31(5):688-694.(WANG Le-qin,ZHU Zu-chao,WANG Xi-xuan.Development on Low-specific-speed High-speed Centrifugal Pump with Two-stage Complex Impeller[J].Journal of Zhejiang University,1997,31(5):688-694.(in Chinese))

[2] 李昳,何伟强,陈巧红.低比转速复合离心叶轮三维湍流场数值模拟及试验[J].浙江理工大学学报,2009,26(5):716-720.(LI Yi,HE Wei-qiang,CHEN Qiao-hong.Numerical Simulation and Test Study of Flow in Low-specific-speed Complex Centrifugal Impeller[J].Journal of Zhejiang Sci-Tech University,2009,26(5):716-720.(in Chinese))

[3] 李国威,王岩,吕秀丽,等.偏置短叶片离心泵内三维流场数值模拟[J].农业工程学报,2011,27(7):151-155.(LI Guo-wei,WANG Yan,LV Xiu-li,et al.Numerical Simulation of Three-dimensional Flow Field in Centrifugal Pump with Deviated Short Splitter Vanes[J].Transactions of the Chinese Society of Agricultural Engineering,2011,27(7):151-155.(in Chinese))

[4] 袁寿其,张玉臻.离心泵分流叶片偏置设计的试验研究[J].农业机械学报,1995,26(4):79-83.(YUAN Shou-qi,ZHANG Yu-zhen.Tests on Centrifugal Pump with Deviated Splitting Vanes[J].Transactions of the Chinese Society of Agricultural Machinery,1995,26(4):79-83.(in Chinese))

[5] 陈松山,周正富,何钟宁,等.离心泵偏置短叶片叶轮内部流动的粒子图像速度测量[J].机械工程学报,2008,44(1):56-61.(CHEN Song-shan,ZHOU Zheng-fu,HE Zhong-ning,et al.Particle Image Velocimetry Measurement of Internal Flow Characteristics of Centrifugal Pump Impeller with Deviated Short Spltters[J].Chinese Journal of Mechanical Engineering,2008,44(1):56-61.(in Chinese))

[6] 程云章,张伟国,骆宾海,等.多级离心泵内部流场数值模拟与节能技术研究[J].水电能源科学,2010,28(10):115-117.(CHENG Yun-zhang,ZHANG Wei-guo,LUO Bin-hai,et al.Research on Numerical Simulation of Inside Flow in Multistage Centrifugal Pump and Energy Saving Technology[J].Water Resources and Power,2010,28(10):115-117.(in Chinese))

[7] 何有世,袁寿其,郭小梅,等.带分流叶片的离心泵叶轮内三维不可压缩湍流场的数值模拟[J].机械工程学报,2004,40(11):153-157.(HE You-shi,YUAN Shou-qi,GUO Xiao-mei,et al.Numerical Simulation for 3-D Incompressible Turbulent Flow in the Impeller with Splitting Vanes of Centrifugal Pump[J].Chinese Journal of Mechanical Engineering,2004,40(11):153-157.(in Chinese))

[8] 陈松山,周正富,葛强,等.长短叶片离心泵正交试验研究[J].扬州大学学报,2005,8(4):45-48.(CHEN Song-shan,ZHOU Zheng-fu,GE Qiang,et al.Orthogonal Experimental Study on Centrifugal Pump with Deviated Splitter Vanes[J].Journal of Yangzhou University,2005,8(4):45-48.(in Chinese))

[9] 齐学义,倪永燕.复合式离心泵叶轮短叶片偏置设计分析[J].甘肃工业大学学报,2003,29(4): 60-63.(QI Xue-yi,NI Yong-yan.Analysis of Impeller Design of Compound Centrifugal Pumps with Offset Short Vane[J].Journal of Gansu University of Technology,2003,29(4): 60-63.(in Chinese))

[10] 朱玉才,吴玉林,潘爱先.离心式固液两相流泵叶片形状对流体动力特性影响的研究[J].机械工程学报,2004,40(8):67-71.(ZHU Yu-cai,WU Yu-lin,PAN Ai-xian,et al.Influence of Vane Curve of Solid Liquid Two-phase Flow Centrifugal Pump of Liquid-solid Two-phase Fluid on Dynamic Properties of Fluid[J].Chinese Journal of Mechanical Engineering,2004,40(8):67-71.(in Chinese))

[11] 朱玉才,吴玉林,曲衍国,等.离心泵叶片压力面固液两相流的边界层分析[J].工程热物理学报,2005,26(3):429-431.(ZHU Yu-cai,WU Yu-lin,QU Yan-guo,et al.Boundary Layer Analysis of Solid-liquid Two-phase Fluid on Pressure Surface of Centrifugal Pump Vane[J].Journal of Engineering Thermophysics,2005,26(3):429-431.(in Chinese))

[12] 吴玉林,葛亮,陈乃祥.离心泵叶轮内部固液两相流动的大涡模拟[J].清华大学学报:自然科学版,2001,41(10):93-96.(WU Yu-lin,GE Liang,CHEN Nai-xiang.Large Eddy Simulation of Siltliquid Twophase Flow Through a Centrifugal Pump Impeller[J].Journal of Tsinghua University(Science and Technology),2001,41(10):93-96.(in Chinese))

[13] 刘建瑞,徐永刚,王董梅,等.离心泵叶轮固液两相流动及泵外特性数值分析[J].农业机械学报,2010,41(3):86-90.(LIU Jian-rui,XU Yong-gang,WANG Dong-mei,et al.Numerical Simulation of Solid-liquid Two-phase Turbulent Flow in Impeller Channel and Pump Characteristics Analysis[J].Transactions of the Chinese Society for Agricultural Machinery,2010,41(3):86-90.(in Chinese))

[14] 张静,吴波,覃正超.离心泵内固液两相流动的三维数值模拟[J].湖南农业大学学报(自然科学版),2009,35(2):189-191.(ZHANG Jing,WU Bo,QIN Zheng-chao.On 3-D Numerical Simulation of Solid-liquid Two Phase Flow in Centrifugal Pump[J].Journal of Hunan Agricultural University(Natural Sciences),2009,35(2):189-191.(in Chinese))

[15] 袁寿其,李昳,何朝辉.无堵塞离心泵内部三维固液两相湍流场数值模拟[J].机械工程学报,2003,39(7):18-22.(YUAN Shou-qi,LI Yi,HE Zhao-hui.3-D Calculation of Solid-liquid Two-phase Turbulent Flow within A Non-clogging Centrifugal Pump[J].Chinese Journal of Mechanical Engineering,2003,39(7):18-22.(in Chinese))

[16] 陈次昌,杨昌明,熊茂涛.低比转速离心泵叶轮内固液两相流的数值分析[J].排灌机械,2006,24(6):1-3.(CHEN Ci-chang,YANG Chang-ming,XIONG Mao-tao.Numerical Analysis on Two-phase Flow Through Impeller of Low-specific–speed Centrifugal Pump[J].Drainage and Irrigation Machinery,2006,24(6):1-3.(in Chinese))

[17] 王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.(WANG Fu-jun.Analysis Computional Fluid Dynamics-Theory and Application of CFD Software[M].Beijing:Tsinghua University Press,2004.(in Chinese))

收稿日期:2011-12-15 修回日期:2011-12-27 网络出版时间:2012-04-17

网络出版地址:

推荐访问: 两种 离心泵 两相 内固液

版权所有:智城范文网 2010-2025 未经授权禁止复制或建立镜像[智城范文网]所有资源完全免费共享

Powered by 智城范文网 © All Rights Reserved.。粤ICP备20058421号