当前位置:智城范文网>范文大全 > 征文 > 基于复杂网络的车载自组织网络抗毁性分析

基于复杂网络的车载自组织网络抗毁性分析

时间:2022-03-25 08:08:31 来源:网友投稿

zoޛ)j馕@4Dچ评价指标的VANET拓扑抗毁性参数;然后,基于带有车辆换道功能的智能驾驶员模型,应用VanetMobisim仿真软件建立VANET;最后,通过仿真实验分析了网络节点数、通信半径以及攻击模式对VANET抗毁性的影响。实验结果表明由于车辆节点度分布的不均匀性,VANET对随意攻击具有较强的抗毁性,而在蓄意攻击下显得比较脆弱;基于节点介数的蓄意攻击对网络的破坏更快、更强。这些规律为优化VANET拓扑控制、网络协议开发和网络管理提供新的指导。

关键词:

车载自组织网络;复杂网络;抗毁性;随意攻击;蓄意攻击;仿真

中图分类号: TP393.1 文献标志码:A

0引言

移动Ad Hoc网络(Mobile Ad Hoc NETwork, MANET)是一种自组织无线网络,由于它不需要基础设施支持,因此网络部署快速,扩展方便,使得它被广泛应用于军事、救灾、商业等各领域。近年来,城市车辆与日俱增,移动网络技术日益突破,车辆自组织网络(Vehicle Ad Hoc NETwork, VANET)[1]作为一种特殊的MANET网络也快速引起高度重视。在VANET中,在一定的区域内使用无线网络通信技术将车辆与车辆以及车辆与固定基础设施连接在一起,从而一个车辆间多跳通信网络在现有道路上被动态、快速地构建,且具有自组织、分布式控制的特点,因此,VANET在交通方面具有良好的应用前景,如信息预警、行车安全、车辆之间通信及车辆Internet访问等。

VANET既具MANET网络的特点,如拓扑结构动态变化、自组织无中心、低带宽等,又有自己的特点,比如快速移动性、拓扑变化频繁、间歇连通性、网络规模大、充足的能量供应等[2]。在VANET中,由于车辆的高速运动,网络拓扑随之变化,对网络性能造成直接影响,因此如果能够掌握VANET拓扑结构的动态特性,可以设计高效的拓扑控制算法,优化网络连通性,使网络能够持续稳定提供可靠的服务。抗毁性是评价网络拓扑特征的主要指标之一,通过抗毁性的研究可以发现网络中的安全隐患和薄弱环节,从而采取一系列有效的措施来提高网络的抗毁性,优化网络拓扑结构,保证网络的稳定的通信能力,这对拓扑动态变化的VANET协议开发和网络管理有着重要的意义。

目前,国内外对Ad Hoc网络的抗毁性研究较多。比如文献[3]研究了网络抗毁性受节点行为的影响,通过建立节点行为模型及分析三维网络连通性得到了三维MANET网络抗毁性的一种定量分析方法;同时仿真检验了它的有效性和合理性。文献[4]引入自然连通度为抗毁性度量指标,建立了能耗的移动Ad Hoc网络拓扑结构抗毁性综合测度模型,并确定了基于网络拓扑抗毁性的最优发射半径。Azni等[5]根据相关节点的行为建立了k相关抗毁性模型,通过仿真分析了Ad Hoc网络的全局抗毁性。文献[6]中有针对性地分别从失效成因、测度、提升策略与故障检测和修复等4个方面对无线传感器网络抗毁性的研究进行归纳和分类,着重探讨了基于网络重构和拓扑演化及路由控制的无线传感器网络抗毁性优化策略。

目前,对VANET拓扑结构的研究主要是基于复杂网络理论分析其网络的度分布、聚类系数、路径长度等。文献[7]以多Agent微观交通仿真器(Multiagent Microscopic Traffic Simulator, MMTS)为仿真工具,研究了瑞士城市苏黎世交通网络的瞬时特性,研究结果表明网络节点数服从参数幂律分布;通信半径越大,最大集团的值越大,集团的数目越少;VANET不存在小世界特性。文献[8]中利用4000多辆出租车收集的实时数据,分析了城市环境下车辆自组网的度分布、聚类系数、特征路径长度等拓扑特性,建立了一种车辆自组网的网络模型,通过仿真验证了所建模型的有效性。文献[9]以城市道路交通仿真软件(Simulation of Urban Mobility,SUMO)为仿真工具研究了德国科隆的交通网络的瞬时拓扑结构,其主要刻画参数包括最大连通分支、度及介数中心性等,分析结果表明车载自组织网不具有小世界特性。文献[10]应用Barabasi和Albert提出的BA(BarabasiAlbert)无标度网络对VANET拓扑进行建模分析,认为VANET具有小世界特性。文献[11]利用车辆全球定位系统(Global Positioning System, GPS)数据分析了VANET拓扑结构的动态演化特征。据研究所知,对VANET拓扑结构抗毁性的研究甚少,仅有文献[12]对VANET的抗毁性作了初步研究,但是该文认为VANET是无标度网络,然后用无标度网络模型产生VANET,事实上,这样生成的VANET就是一个无标度网络,与现实环境的VANET相差太远,几乎没有考虑VANET的任何特征,比如节点移动性、节点移动受到道路限制等,因此该文本质上是研究了无标度网络的抗毁性,并非VANET的抗毁性。

抗毁性是VANET拓扑结构的重要特性之一,它代表网络在某种极端攻击或错误条件下其服务能力下降的程度。由于真实、公开的VANET的trace比较少,而且能够获得的一些真实trace存在一些问题,比如GPS数据不完整、时间粒度、数据精度不够等,使得用真实VANET移动数据研究抗毁性存在一定困难,因此,本文通过VanetMobiSim车辆仿真软件,深入分析VANET的抗毁性特征,为网络拓扑结构的优化提供指导。

1VANET抗毁性研究方法及测度

1.1抗毁性研究方法

目前,抗毁性的主要研究方法是用不同的方式对网络进行攻击,用相应的测度指标对网络的抗毁性进行分析。网络攻击策略是指采取何种方式删除网络中的节点或边,在现有研究中主要应用Albert等[13]Albert提出的文献,与文献13的作者不匹配,请作相应调整,以便保持一致;要注意论文在正文中的依次引用顺序。提出的随意攻击(Random Attacks or Failure)和蓄意攻击(Intentional Attacks)两种方式。随意攻击通常是指随机选择网络的一个节点或边进行攻击,然后再随意攻击其余节点中的一个节点或边,直至将网络中所有节点全部攻击完为止。蓄意攻击又称为选择性攻击,选择重要的节点或边作为攻击对象,一般用度和介数度量节点和边的重要性。具体攻击过程为:首先选取网络中度或介数最大的节点或边作为第一攻击目标,攻击完以后重新计算网络各节点或边的度量等级,依旧对度量等级最高的节点或边进行攻击,重复该过程,直到网络中所有的节点全部被攻击完为止。

1.2节点重要度评估方法

蓄意攻击选择重要节点或边进行攻击,评估网络中节点或边重要性的方法很多,本质都源于图论及基于图论的数据挖掘。本文用度和介数评估车辆节点的重要性。

定义1节点的度。在网络中,节点vi的邻边数目ki称为该节点vi的度。网络的平均度为:

k=1N∑Ni=1ki(1)

直观上看,一个节点的度越大,该节点越重要。

定义2节点的介数。节点vi的介数Bi就是网络中所有最短路径中经过该节点的数量比例之和,即:

Bi=∑j,k∈V, j≠kNjk(i)Njk(2)

其中:Njk表示节点vj和节点vk之间的最短路径条数;Njk(i)表示节点vj和节点vk之间的最短路径路过节点vi的条数。介数是一个全局特征量,反映节点在整个网络中的作用和影响力。在VANET中,若一个节点的介数越大,则表明它在网络中交换的信息流越大,可视为网络中的核心节点,也意味着它更容易拥塞,成为网络的瓶颈。

1.3VANET抗毁性测度

设G=(V,E)为VANET的拓扑图,其中V={v1,v2,…,vN}是网络节点的集合,E={e1,e2,…,ek}是网络边的集合,节点数定义为N=‖V‖。定义子图Ci=G(Vi,Ei)为含节点vi连通分支,设m(G)=max1≤i≤n‖V(Ci)‖表示图G的所有连通分支中顶点数最多的那个连通分支的节点数,则节点数最多的连通分支为最大连通分支。

定义3最大连通度S。将网络中的最大连通分支中节点数与网络中总的节点数的比值称为最大连通度,即:

S=m(G)/N(3)

那么0

定义4连通分支平均规模s。当VAENT受到攻击后,网络被分割为若干连通分支,连通分支平均规模定义为去掉最大连通分支后其他连通分支的平均节点数,即:

s=(∑ni=1‖V(Ci)‖-m(G))/(n-1)(4)

显然0

定义5临界点移除比例fc。当网络中的节点受到攻击后,网络处于崩溃边缘时,网络中被攻击的节点数占总节点数的比例,称为临界点移除比例,记为fc。

网络在某种攻击模式下,百分比f的节点被移除,当f超过一定阈值,即f≥fc当在“=fc”时,属于哪种情形,需明确。时,网络分割成许多小的非连通分支;当f

设网络中任意两个节点vi与vj之间的距离dij为连接这两个节点的最短路径上的边数。VANET由于车辆的高速移动、拓扑变化频繁,使得网络间歇连通,因此存在dij=∞。而且当网络受到攻击时,网络的连通性也将发生改变,网络被破坏到一定程度时,会产生孤立节点,此时会存在dij=∞,因此,文献[13]提出用网络全局效率来描述非全连通网络的连通性。

定义6全局效率E。定义网络全局效率为:

E=1N(N-1)∑i, j∈V,i≠j1dij(5)

显然,网络全局效率越大,网络连通性越好。

2仿真实验

2.1VANET仿真环境

本文采用VanetMobiSim[14]软件建立VANET环境,移动模型采用带有车道变换的智能驾驶员模型(Intelligent Driver Model with Lane Changes, IDMLC)[15]。该模型是一种微观交通流模型,是在IDM的基础上增加了车辆在十字路口的管理及车辆换道功能的智能移动模型,使得其更加符合真实的交通场景。仿真实验中,网络节点即为运动的车辆,可以获取任意时刻任意车辆的位置、速度、加速度、所处车道等瞬时信息。IDMLC移动模型中车辆长度为5m,加速度a和减速度b分别为0.6m/s2和0.9m/s2,礼貌参数p为0.5,其他参数设置如表1所示。

2.2VANET抗毁性分析

下面分析在不同攻击模式下VANET的抗毁性,为了在图中便于区分不同攻击模型,用符号Failure、RD和RB分别表示随意攻击、基于节点度的蓄意攻击和基于节点介数的蓄意攻击。图1为网络中车辆数为200、不同通信半径时,VANET受到Failure、RD和RB等三种攻击时网络最大连通度的变化趋势。由图1可知,当通信半径r=200m, f=0时,S=0.3630,即初始网络连通性较差。在攻击过程中当最大连通度低于0.1000时,视网络基本瘫痪。在随意攻击下,当S为0.0911时,临界点移除比例fc=53.42%;在RD攻击下,当S为0.0616, fc=28.77%;在RB攻击下,当S为0.0890时, fc=20.55%。当r=400m, f=0时,S=0.9521,初始网络近乎全连通(网络全连通时S=1)。在随意攻击下,当S为0.0747时, fc=82.19%;在RD攻击下,当S为0.0822时, fc=57.53%;在RB攻击下,当S为0.0959时, fc=36.99%。这一方面说明了通信半径越大,VANET连通性越好,临界点移除比例fc越大,抗毁性越强;另一方面,当通信半径相同时,随意攻击的临界点移除比例fc的值均大于蓄意攻击模式的,因此VANET有较强的鲁棒性,且在蓄意攻击下,由于将重要节点移除后网络迅速分割为多个连通分支,S先呈现迅速大幅度下降、然后缓慢下降趋势,即VANET又具有脆弱性。这种既鲁棒又脆弱的抗毁特征是VANET中车辆度分布不均匀所致。

图2为网络中车辆数为200、不同通信半径时,VANET受到Failure、RD和RB三种攻击时的网络连通分支平均规模。由图2可知,当通信半径较小(如r=200m)时,初始网络连通性较差,三种攻击策略下连通分支平均规模s均随移除节点比例的增加而逐渐减小。当通信半径较大时,网络初始连通性较好,则s随去除节点比例的变化趋势都是先变大后变小。当通信半径r=400m时,在遭受随意攻击时,s在阈值f=0.8220处开始缓慢变小,在遭受蓄意(RB、RD)攻击时,s分别在阈值f=0.4521和f=0.2055处开始变小。连通分支平均规模s之所以在阈值之前会变大,是由于随着节点被移除,网络总体连通程度变得越来越松散。在阈值之后会变小,是因为网络在大量节点失效时被分割成互不连通的多个较小的分支,当节点被全部移除时,网络则会消失。通过计算,在r=300m时,VANET在Failure、RD和RB三种攻击下连通分支平均规模s的方差分别为2.0306,2.4913和9.0228,即Failure攻击下s的波动最小,RB的波动最大,当通信半径发生变化时,也有类似的结论。这也说明了VANET既鲁棒又脆弱的特征。

图3分别为网络中车辆数为200、不同通信半径时,VANET受到Failure、RD和RB三种攻击时网络全局效率的变化趋势。由图3可知,通信半径越大,VANET效率越高;同时,随意攻击模式下的网络效率均高于蓄意攻击的。

另外,比较图1~3中最大连通度、临界点移除比例、连通分支平均规模和网络效率等抗毁性测度的值,可知对于蓄意攻击的两种策略,RB模式的攻击效能要强于RD模式。

下面研究车辆密度对VANET抗毁性的影响。图4~6为r=400m时不同车辆密度的VANET采取Failure、RD和RB攻击策略时表现出的抗毁性差异。从图4~6中分析得到:在通信半径一定时,车辆密度越大,VANET连通性越好,抗毁性越强,但是当网络达到全连通时,车辆密度对VANET抗毁性影响不大,因此,在VANET拓扑控制时,可以根据实际道路、地形、路边单元(RoadSide Unit, RSU)的配置等情况,对车辆通信半径和车辆密度进行优化设置,使得网络能够保持良好的连通性。

3结语

在VANET中,抗毁性对于分析整个网络性能来说十分重要,尤其是在增强安全性方面的应用。本文基于IDMLC移动模型对车载自组织网络的抗毁性特征作了研究,仿真结果表明,VANETs既有鲁棒性又有脆弱性;通信半径和车辆密度越大,VANETs抗毁性越好,但当网络全连通时,车辆密度对抗毁性影响很小。由于蓄意攻击(RD、RB)对网络破坏性强,因此,如何在拓扑控制时优化网络通信半径、车辆密度及路边基础设施配置等参数,使得网络中各个车辆节点保持相对均衡地位,从而提高VANETs抗毁性,这将是后续的研究工作。另外,本文只研究了VANET的瞬时拓扑结构及其抗毁性,然而,VANET的重要特征之一是网络拓扑结构的实时变化,其动态抗毁性特征也是接下来工作之一。

参考文献:

[1]

IEEE. IEEE Std.802.11p draft amendment, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Wireless Access in Vehicular Environments (WAVE) [S]. Piscataway: IEEE, 2005.

[2]

SAIF A S, MOATH M A D, ALI H A B, et al. A comprehensive survey on vehicular Ad Hoc network [J]. Journal of Network and Computer Applications, 2014, 37: 380-392.(无期)

[3]

PENG S, WANG G, HU Z, et al. Survivability modeling and analysis on 3D mobile Ad Hoc networks [J]. Journal of Central South University of Technology, 2011, 18(4): 1144-1152.

[4]

胡兴雨,张学义,吴俊,等.移动Ad Hoc网络拓扑结构抗毁性测度模型[J].计算机工程与应用,2011,47(2):78-80.(HU X Y, ZHANG X Y, WU J, et al. Measure of invulnerability of Ad Hoc network topologies based on natural connectivity [J]. Computer Engineering and Applications, 2011, 47(2): 78-80.)

[5]

AZNI A, AHMAD R, NOH Z. Survivability modeling and analysis of mobile Ad Hoc network with correlated node behavior [J]. Procedia Engineering, 2013, 53: 435-440.

[6]

李文锋,符修文.无线传感器网络抗毁性[J].计算机学报,2015,38(3):625-647.(LI W F, FU X W. Survey on invulnerability of wireless sensor network [J]. Chinese Journal of Computers, 2015, 38(3): 625-647.)

[7]

PALLIS G, KATAROS D, DIKAIAKOS M. D, et al. On the structure and evolution of vehicular networks [C]// Proceedings of 17th Annual Meeting of the International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems. New York: ACM, 2009: 502-511.

[8]

张丽丽,陈浩,李臣明,等.城市环境下基于拓扑特性的车辆自组网建模[J].软件学报,2013,24(S1):51-61.(ZHANG L L, CHEN H, LI C M, et al. Modeling the vehicular Ad Hoc networks based on topology characteristics in urban scenario [J]. Journal of Software, 2013, 24(S1): 51-61.)

[9]

NABOULSI D, FIORE M. On the instantaneous topology of a largescale urban vehicular network: the Cologne case [C]// Proceedings of the Fourteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing. New York: ACM, 2013: 167-176.

[10]

ZHANG H, LI J. Modeling and dynamical topology properties of VANET based on complex networks theory [J]. AIP Advances, 2015, 5(1): 017150.

[11]

ZHANG L, LI Y, TAN G, et al. Modeling the dynamic evolution of the vehicular Ad Hoc networks under the city scenario [J]. International Journal of Distributed Sensor Networks, 2015, 2015: Article ID 524857. doi:10.1155/2015/524857.

[12]

ZHANG H, LI J, LV Y. Structure performance analysis of vehicular Ad Hoc networks based on complex network theory [J]. Computer Modelling & New Technologies, 2014, 18(2): 46-51.

[13]

LATORA V, MARCHIORI M. Efficient behavior of smallworld networks [J]. Physical Review Letters, 2001, 87(19): 198701.

替换了文献13

ALBERT R, JEONG H, BARABASI A L. Error and attack tolerance of complex networks [J]. Nature, 2000, 406(6794): 378-382.

[14]

HARRI J, FIORE M, FETHI F, et al. VanetMobiSim project [EB/OL]. [20160301]. http://vanet.eurecom.fr.

[15]

TRIEBER M, HELBING D. Realistische mikrosimulation von strassenverkehr mit einem einfachen modell [C]// Proceedings of the 2002 Symposium Simulations Technik. Rostock, Germany: ASIM, 2002: 514-520.

推荐访问: 组织网络 分析 网络 抗毁性

版权所有:智城范文网 2010-2025 未经授权禁止复制或建立镜像[智城范文网]所有资源完全免费共享

Powered by 智城范文网 © All Rights Reserved.。粤ICP备20058421号