当前位置:智城范文网>范文大全 > 征文 > 圆柱壳内隔振系统的波动模型及其振动特性

圆柱壳内隔振系统的波动模型及其振动特性

时间:2022-04-03 09:40:14 来源:网友投稿

zoޛ)j馑קzhZ/SLv文章编号: 10044523(2015)02022710

DOI:10.16385/j.cnki.issn.10044523.2015.02.008

引言

圆柱壳是舰船、潜艇、航空航天器等的基本结构组成元件,内部动力机械作为主要振动声源,产生的不平衡扰动经由隔振支承传递到外壳结构,进而对内对外辐射噪声,降低驾乘舒适度及声隐性能。目前对于圆柱壳内安装动力机械后振动特性的研究主要有解析法[1~5]、数值法及试验法[6~8]。解析法虽较难处理分段、层合、加肋、铺板、带基座等复杂圆柱壳结构的情况,但在揭示系统耦合振动机理及结构参数改变带来的影响方面,相较数值法及试验法更加方便高效。Howard[1]利用省略非径向惯性项的DonnellMushtari薄壳理论,研究了振动刚体通过一组平置式主被动隔振器传递到圆柱壳体基础上的能量消减效果。以Howard的研究为基础,Pan[2],Liu[3]等分别对安装在圆柱壳内动力机械的双层平置被动隔振系统及多种前馈主动控制策略下的耦合振动系统能量传递和声辐射特性进行了分析。Li[4],Ma[5] 等考虑到非径向振动组分的贡献以及奇(正弦)偶(余弦)模态同时计入后的耦合作用对总体系统响应的影响,改为采用适用性更广的GoldenveizerNovozhilov薄壳理论,分别探讨了刚性机器与圆柱壳体基础之间插入单层被动及双层主动平置隔振器后的振动传递特性。然而,圆柱壳体结构带有一定的周向曲度,对其内动力机械进行隔振设计时,需充分考虑到隔振系统抵御外界倾斜、摇摆扰动(如海浪或气流的冲击)的能力,故而在实际中更适合采用斜置安装的隔振器[9]。目前的斜置隔振系统研究尚停留在支承基础为绝对刚性或简单的柔性梁、板类结构[10~12],上述对圆柱壳体基础隔振的研究仅局限于隔振器平置情况,均未涉及隔振器安装倾角对整体系统模态特性及动态传递特性影响的探讨。并且在理论建模方面都将隔振器简单处理成具有多向刚度的无质量弹簧单元,从而无法阐述及定量预估实际隔振器的分布参数特性(分布质量、分布弹性)在特定激励频段诱发的内共振现象及其与柔性圆柱壳体基础的耦合交互作用对隔振效果的影响。

本文针对由多向复合扰动振源(包含力、力矩激励)、斜置分布参数隔振器及两端剪力薄膜支撑各向同性圆柱壳体基础结构组成的被动隔振系统,建立其解析形式的耦合振动波动模型;基于GoldenveizerNovozhilov薄壳理论和模态叠加原理,运用子结构导纳法推导总体系统的动态特性传递方程。结合算例,以功率流为价值函数探讨系统耦合振动传递机理,分析隔振器的分布参数特性、圆柱壳体基础的模态特性及隔振器的斜置倾角对系统隔振效果的影响。

从图7,8中均可看出,未采用解耦角布置的隔振系统,在仅有倾倒力矩(横向力)激励时,振源的横向横摇耦合振动模态连带被激发,而采用解耦角布置时,仅激发出横摇(横向)共振模态。两个解耦角对动力机械横向横摇耦合振动的解耦均有效。如前所述,解耦角的选取还要受到整体系统垂向对中性的限制,过大的解耦角应舍弃。此外,值得注意的是,式(20)给出的解耦条件建立在绝对刚性安装基础假设之上,其解耦能力应用于柔性安装基础情况时,会受到动力机械安装频率与基础柔性模态之间耦合作用的影响,尤其当设计的安装频率接近于基础基频时,由于耦合作用强烈,支承的各向刚度变化明显,便可能无法实现解耦[21]。然而,耦合模态间的去耦并非最终目的。斜置式支承的最大优势在于可通过合理配置安装位置a和b,倾斜角α及对隔振器各向刚度(kr,kp,kα)的选型将动力机械的各阶刚体模态设置为预定值或落在所期望频带范围内,从而达到满意的隔振效果。本文所建立的波动模型相较于传统隔振模型(无质量复刚度隔振器模型、绝对刚性基础假设),能够计入隔振器的分布参数特性、基础的柔性模态及两者的耦合交互影响,且能够对上述提到的相关参数进行灵敏度分析及最优化设计,从而更大层面上发挥其优越性。

4结论

建立了圆柱壳内动力机械斜置隔振系统的解析形式耦合振动波动模型。运用子结构导纳法对其动态特性传递方程进行了理论推导。通过有限元法对所建解析模型的有效性进行了验证。以功率流为价值函数对系统的耦合振动机理及斜置倾角对隔振效果的影响进行了阐述与评估。研究表明:

(1) 所建解析形式波动模型分析得出的系统主要模态参数及传递特性与通过有限元模型分析的结果吻合程度较高,证明了该模型的有效性。

(2) 隔振器的分布参数特性以及隔振器与壳体基础在接点处的波型转化耦合交互作用使得高频域系统功率流下降趋势变缓,尤其是经耦合交互作用放大的壳体基础相关模态会严重降低声隐性能。传统无质量复刚度隔振器模型无法阐述及预估这种现象及其影响,不适用于高频段内的隔振设计。

(3) 在保证整体系统垂向对中性前提下,适度增大隔振器斜置倾角,可使动力机械的各向刚体模态波峰聚集在一个较窄的频带范围内,整体系统的横向稳定性得到增强,且更有利于隔离横摇方向的倾倒力矩扰动,同时降低传递到安装基础的功率流幅值,达到更佳的隔振效果。

(4) 当系统安装频率与基础柔性模态之间耦合作用较为微弱且动力机械的安装位置及隔振器轴向、横向刚度允许时,可通过配置合适的隔振器斜置倾角,实现动力机械横向横摇耦合振动模态的去耦,获取其独立的横向及横摇振动。

(5) 所建立的波动模型能够计入隔振器的分布参数特性、基础的柔性模态及两者的耦合交互影响,并能够对相关参数进行灵敏度分析及最优化设计。由于各子结构导纳元素不受维度的延拓或缩聚的限制,所用分析方法可方便推广到多层、多振源及三维耦合等复杂隔振系统的研究。并且所给的圆柱壳体导纳函数易于结合试验频响函数修正,给分段、层合、加肋、铺板、带基座等复杂圆柱壳基础的隔振设计带来一定启发。

参考文献:

[1]Howard C Q, Hansen C H, Pan Jiaqiang. Power transmission from a vibrating body to a circular cylindrical shell through passive and active isolators[J]. Journal of the Acoustical Society of America, 1997, 101(3):1 479—1 497.

[2]Pan Jiaqiang, Hansen C H. Power transmission from a vibrating source through an intermediate flexible panel to a flexible cylinder[J]. Journal of Vibration and Acoustics, 1994, 116(4):496—505.

[3]Liu X, Jin G, Wang Y, et al. Active control of a machine suspension system supported on a cylindrical shell [J]. Journal of Computational Acoustics, 2013, 21(3):1—19.

[4]Li W L, Daniels M. Vibrational power transmission from a machine to its supporting cylindrical shell[J]. Journal of Sound Vibration, 2002, 257(2):283—299.

[5]Ma Xianglong, Jin Guoyong, Liu Zhigang. Active structural acoustic control of an elastic cylindrical shell coupled to a twostage vibration isolation system[J]. International Journal of Mechanical Sciences, 2014, 79:182—194.

[6]Zheng H, Liu G R, Tao J S, et al. FEM/BEM analysis of diesel pistonslap induced ship hull vibration and underwater noise[J]. Applied Acoustics, 2001, 62(4):341—358.

[7]黄修长, 徐时吟, 张志谊,等. 基于频响函数综合的舱筏隔振系统灵敏度分析和优化[J]. 振动与冲击,2011,30(5):145—151.

Huang Xiuchang, Xu Shiyin, Zhang Zhiyi. Design sensitivity analysis and optimization of a floating raft system using a FRFbased substructuring method[J]. Journal of Vibration and Shock, 2011, 30(5):145—151.

[8]Huang Xiuchang, Zhang Zhiyi, Zhang Zhenhua, et al. Multichannel active vibration isolation for the control of underwater sound radiation from a stiffened cylindrical structure: a numerical study[J]. Journal of Vibration and Acoustics, 2011, 134(1):0110121—12.

[9]Winberg M. Noise and vibration control of combustion engine vehicles[M]. Karlskrona:Blekinge Institute of Technology, 2005.

[10]严济宽. 机械振动隔离技术[M]. 上海:上海科学技术文献出版社, 1986.

Yan Jikuan. Mechanical Vibration Isolation[M]. Shanghai: Science and Technology Documents Press of Shanghai, 1986.

[11]Gardonio P, Elliot S J, Pinnington R J. Active isolation of structural vibration on a multipledegreeoffreedom system, part I: the dynamics of the system[J]. Journal of Sound and Vibration, 1997, 207(1):61—93.

[12]陈荣, 孙玲玲, 吴银兵,等. 基于Timoshenko梁理论的斜置隔振系统功率流特性分析[J].振动与冲击, 2010, 29(9):97—101.

Chen Rong, Sun Lingling, Wu Yinbing, et al. Power flow analysis of inclined isolation system based on viscoelastic fractional derivative model[J]. Journal of Vibration and Shock, 2010, 29(9):97—101.

[13]Snowdon J C. Vibration isolation: use and characterization[J]. Journal of the Acoustical Society of America,1979, 66(5):1 245—1 274.

[14]Du Y, Burdissoa R A, Nikolaidis E, et al. Effects of isolators internal resonances on force transmissibility and radiated noise[J]. Journal of Sound and Vibration, 2003, 268(4):751—778.

[15]Sun L, Leung A Y T, Lee Y Y, et al. Vibrational powerflow analysis of a MIMO system using the transmission matrix approach[J]. Mechanical Systems and Signal Processing, 2007, 21(1):365—388.

[16]Leissa A E. Vibrations of Shells (NASA SP288)[M]. Washington:U. S. Government Printing Office, 1973.

[17]Soedel W. Vibrations of Shells and Plates[M]. 2nd ed. New York:Marcel Dekker, Inc., 2005.

[18]Dylejko P G, MacGillivray I R. On the concept of a transmission absorber to suppress internal resonance[J]. Journal of Sound and Vibration, 2014, 333(10):2 719—2 734.

[19]吴广明, 沈荣瀛, 华宏星. 复杂弹性耦合隔振系统振动建模研究[J]. 振动工程学报, 2005, 18(1):47—52.

Wu Guangming, Shen Rongying, Hua Hongxing. Modling method on complicated elastic coupled vibration isolation system[J]. Journal of Vibration Engineering, 2005, 18(1):47—52.

[20]何琳, 徐伟. 舰船隔振装置技术及其进展[J].声学学报, 2013, 38(2):128—136.

He Lin, Xu Wei. Naval vessel machinery mounting technology and its recent advances[J]. Acta Acustica, 2013, 38(2):128—136.

[21]孙玲玲, 宋孔杰. 柴油机多支承隔振系统的功率流特性[J]. 内燃机学报, 2003, 21(4):249—252.

Sun Lingling, Song Kongjie. Power flow characteristics of flexible isolation system with multiple mountings[J]. Transactions of CSICE, 2003, 21(4):249—252.

Abstract: In order to deal with the vibration problem about a power machinery installed in a cylinder, the multidimensional coupled vibration transfer model which consists of complex excitations, inclined elastic isolators, and a circular cylindrical shell foundation is established. Based on the GoldenveizerNovozhilov thin shell theory and modal superposition principle, the coupled vibration transfer equation of the overall system is derived by using the substructure mobility approach. The power flow concept is used to assess vibration transfer characteristics and isolation performances as a cost function. Numerical simulation shows that: with consideration of the distributed parameter characteristic of isolators, the system power spectrum decline slower at higher frequencies resulting in an ueliable design of highfrequency vibration isolation. Interestingly, if increasing the inclined angle of isolators appropriately, one can make each rigid mode of the system gathered in a narrow frequency range. Meanwhile, the power transmitted to the shell is less than the verticalmounted case, which leads to a better isolation performance. It can obtain independent transverse and pitch oscillation by changing inclined angle of isolators into a specific value.

Key words: wave and vibration; circular cylindrical shell; inclined vibration isolation; mobility; power flow

推荐访问: 圆柱 振动 波动 模型 特性

版权所有:智城范文网 2010-2025 未经授权禁止复制或建立镜像[智城范文网]所有资源完全免费共享

Powered by 智城范文网 © All Rights Reserved.。粤ICP备20058421号